Ambari 환경에서 multi broker 를 넣는 방법은 두가지가있다.


1. 단순히 아래블로그를 참고하여 server 를 개별로 실행 시키는 방법

 여기를 클릭하여 펼치기...

2. Amabari 를 통해서 Kafka multi broker 를 구현

https://community.hortonworks.com/articles/90895/how-to-configure-multiple-listeners-in-kafka.html
위 페이지를 참고하여 PLAINTEXTSASL (새로운프로토콜) 사용하여 브로커추가를 할 수있다.
또한 https://docs.confluent.io/3.1.2/kafka/sasl.html 을 참고하여 프로토콜 설정을 amabari-kafka-JAAS  설정 파일에 하게되면 되는데,
1개의 카프카서버 - 1 개의 프로토콜로  여러개의  브로커를 둘수 없는 듯하다.

2번방식은결국 프로토콜을 늘려서 브로커를 늘리는 방식이고 개수의 한계가 있다.

결국 정리하자면 복수개의 브로커를 두려면 1번 방식으로 여러번 실행 시켜야 한다. 다만 암바리가 그런환경을 공식적으로 지원하지 않는 듯 하다.

왜? 필요가 없으니까 (kafka 는 대체로 1브로커 체재에서도 바쁘다)


'spark,kafka,hadoop ecosystems > apache.kafka' 카테고리의 다른 글

kafka manager  (0) 2018.11.20
kafka tuning config  (0) 2018.11.20
kafka connect  (0) 2018.11.20
kafka vs flink vs esper vs storm vs spark  (0) 2018.11.20
kafka-개요  (0) 2018.11.20

출처 : https://www.confluent.io/product/connectors/ , https://docs.confluent.io/current/connect/connect-filestream/filestream_connector.html

소스 업데이트 >  https://github.com/Sangil55/SimpleFileConnetor/

Understanding Kafka Connect and Kafka Stream


Kafka Connect is a tool that provides the ability to move data into and out of the Kafka system. Thousands of use cases use the same kind of source and target system while using Kafka. Kafka Connect is comprised of Connectors for those common source or target systems.

Connect makes it simple to use existing connector implementations for common data sources and sinks to move data into and out of Kafka. A source connector can ingest entire databases and stream table updates to Kafka topics. It can also collect metrics from all of your application servers into Kafka topics, making the data available for stream processing with low latency. A sink connector can deliver data from Kafka topics into secondary indexes such as Elasticsearch or batch systems such as Hadoop for offline analysis.

Kafka Connect can run either as a standalone process for running jobs on a single machine (e.g., log collection), or as a distributed, scalable, fault tolerant service supporting an entire organization. This allows it to scale down to development, testing, and small production deployments with a low barrier to entry and low operational overhead, and to scale up to support a large organization’s data pipeline.


  •  Import Connectors are used to bring data from the source system into Kafka topics. These Connectors accept configuration through property files and bring data into a Kafka topic in any way you wish. You don't need to write your own producer to do such jobs. A few of the popular Connectors are JDBC Connector, file Connector, and so on.
  • Export Connectors: Unlike Import Connectors, Export Connectors are used to copy data from Kafka topics to the target system. This also works based on the configuration property file, which can vary based on which Connector you are using. Some popular Export Connectors are HDFS, S3, Elasticsearch, and so on.


kind of import Connectors 

  • Active MQ -  AMAZONE 서버용 Apache ActiveMQ용 관리형 메시지 브로커 서비스,  
  • IBM MQ -  Source Connector is used to read messages from an IBM MQ cluster and write them to a Kafka topic.
  • JDBC (Source) - for jdbc
  • Kinetica (Source) - for GPU, RDBMS
  • Azure IoTHub (Source)IoT, messaging
  • Files/Directories (Source)File System, Directories, Logs  Community Community 1Community 2 (confluent 사)
  • FileSystem Connector (Source)File System, S3, HDFS  Community Community
  • ..... various

kind of export Connectors 

  • Amazon S3 (Sink)
  • HDFS (Sink)
  • Cassandra (Sink)
  • .. File System out
  • ...various

등등, 여러가지 connector 플랫폼이 지원되 는데, FILE SYSTEM에서도 connetor 사용 용도는 있지만

주 용도는 직접 data 를 직접 stream 하기 어려운 환경을 위한 지원 툴이 Connector 라고 보면된다. AMAZON SERVER / DB / GPU / AMAZON &  IBM MQ(legacy) / IOT 등 다양한 곳에서 producer 로 data를 stream 하기 위한 connector 의 용도별로 컨풀르엔트사에서 공식 지원 하고 있다.


기업형 메세징 플랫폼의 경우에는 사내 서버이고, 별도 AP AGENT 단의 MQ 구축이 어렵기 때문에  (비교적 간단한 MESSAGE 서버로 NATS SERVER  , 간편 CDC 등도 조사필요)


 import 용 Connector 는 confulent 에서 제공하는 connect-api 를 사용 해서 구현 해야한다.
완성된 번들로도 제공 하며, JAVA 로는 아래 dependency 등 SourceTask을 참조하여 링크처럼 커스터마이징 하여 구현 할 수 있다 (참고 . https://docs.confluent.io/current/connect/devguide.html )

<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>connect-api</artifactId>
<version>1.0.0</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>connect-file</artifactId>
<version>1.0.0</version>
</dependency>


  • *완성된 파일 커넥터를 사용 하기 위해선 기본 컨플루엔트 솔루션을 설치하라고 이야기한다.  https://docs.confluent.io/current/connect/quickstart.html#connect-quickstart
  • 그렇게 하지 않으려면 , JAR 형태로 전체 빌드하여 사용하는것을 생각 해보아야 한다. (다만 파일 읽고 offset 설정하는 부분 직접 구현 필요)


Export 용 Connector 는 우리 상황에서는  Confulent (Default) or  HDFS 용 Export connector 로 고려 할 만하다.

다만 >> KAFKA STREAMS API 를 사용하거나 SPARK - SREAMING 을 사용해서 별도 출력 하게되면, 별도의 output connector 의 사용의미가 없어진다.


KAFKA CONNECTOR   VS   FILEBEAT (ELK)

본격적으로 성능 비교를 하자면, 

ELK 기반의 FILE BEATS AGENT 도 OUT FORMAT 으로 KAFKA topic 을 입력 가능하다.

Filebeat 의 yml 설정파일

filebeat.prospectors:

- input_type: log

paths:
- /root/m_input/*.json
logging.level: debug
logging.to_files: true
logging.to_syslog: false
logging.files:
path: /root/sangil/log
name: mybeat.log
keepfiles: 7

output.kafka:
hosts: ["swinno04.cs9046cloud.internal:6667"]
topic: 'Hello2'
partition.round_robin:
reachable_only: false
required_acks: 1
compression: gzip
max_message_bytes: 1000000


KAFKA 에서 제공하는 Connector 사용과 FILEBEAT 를 비교하여 아래 특성등을 비교할 필요가 있다.

  • producer import perfomance

              >> FILE BEAT 의 경우 아래  테스트 진행
SubjecttopicpartitionReplicationBroker Memcoreopt1coreopt1input sizeinput Throughput (MB/S)output workoutput sizeoutput Throughput (MB/S)시작시간종료시간
filebeat(01번서버) - kafka(04번 서버) - jush flush with bundle consumer.sh1111GB~4GBfilebeat   300MB just flush with consumer665MB4.5MB/S10:03:10
KafkaConnector(java-custom),1번  - kafka(04번 서버) - jush flush with bundle consumer.sh1111GB~4GBkafk-connect


324MB

324MB0.98MB/S06:19:4506:20:00
KA














         - bundle connector 의 경우 파일 크기가 일정 크기 이상이면, 동작 안함, 800K 까지는 정상 동작확인, - 약 4166 rows

          -java code 의 경우 에는 그대로 빌드시 Context 관련 초기화 오류 발생 (implement 하여 재구성 필요!)


Confluent 에서 제공하는 CONNECTOR API 소스를 간략히 설명하자면, Java Buffer  reader 를 통해 polling 하는 구조이다.

 관련 소스

          - 해당 class를 참고하여 재구현 할 경우 line input & offset 쓰고 읽는 부분에 대해서 직접 구현이 필요한데, 시간이 더 소요 될듯 하다. 

          - 이것을 Filesystem 으로 기반하여 구현한 OPEN SOURCE 등을 다시 참고해보면

            오픈소스1 :  https://github.com/jcustenborder/kafka-connect-spooldir/blob/master/src/main/java/com/github/jcustenborder/kafka/connect/spooldir/SpoolDirSourceConnector.java

             오픈소스2 : https://github.com/mmolimar/kafka-connect-fs

             위 2개중에 Connector 는 agent 단에 놓고,  내부 NETWORK 의 KAFKA BROKER 까지로 전송 할 수 있는 오픈소스를 찾아서 성능 테스트 해보아야한다.

             다만 위 오픈소스 2개 모두 , KAFKA CONFULENT 플랫폼 기반이기 때문에, 원정서버(MAS01~26) 에 일부 설치를 고려해야한다.(즉, Kafka Connector (stand alone등이)  자체적으로 실행 되어야 된다.)

  • Replication / Partition  Performance


  • Scalblity


  •  fault tolerance 


  • *source 수정 편의성


'spark,kafka,hadoop ecosystems > apache.kafka' 카테고리의 다른 글

kafka tuning config  (0) 2018.11.20
kafka multi brokers  (0) 2018.11.20
kafka vs flink vs esper vs storm vs spark  (0) 2018.11.20
kafka-개요  (0) 2018.11.20
kafka 로그 설정 에 대하여  (0) 2018.10.17

Kmean clustering lib (1).pptx


  • k-mean 알고리즘 개선 Topic

  • 추가 논의 및 결정 필요 사항

    • 데이터 전처리

  • config 분리 관련 결정사항

    • 파일명 : kmeanconfig.xml
    • 확장자 : xml
    속성명
    설명
    타입
    예시
    기본 값
    k_rangek값 범위 지정숫자, 숫자~숫자4, 10~11
    10 18
    inputdir
    입력파일 경로파일 경로(문자열)/user/hadoop/input
    data/kmeans-input
    outputpath
    결과파일 경로파일 경로(문자열)/user/hadoop/output
    data/kmeans-output_20180205_21
    dimension입력데이터의 dimension숫자3
    2
    maxitr
    최대 Iteration 횟수숫자1060
    convdelta
    반복 종료 조건숫자30.01
  • conf 파일 형식 은아래와 같으며 이곳에 저장 후 사용 한다 $(hadoophome)/data/kmeans/conf

  • Default 셋팅은 아래와 같다.

    $HADOOP_HOME/data/kmeans/conf
    1
    2
    3
    4
    5
    6
    k_range 10 18
    inputdir data/kmeans-input
    outputpath data/kmeans-output_20180205_21
    dimension 2
    maxitr 60
    convdelta 0.01



  • JSON 포맷

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    {
        "k":5,
        "dimension":2,
        "clusters": [
            {
              "center" : [2 5] ,
              "count" 3,
              "points":[ [34], [25], [16]]
             },
        {
              "center" : [2,5] ,
              "count" 3,
              "points":[ [34], [25], [16]]
             },
        {
              "center" : [8 8] ,
              "count" 2,
              "points":[ [109], [88]]
             },
        {
              "center" : [4 5] ,
              "count" 1,
              "points":[ [45] ]
             },
        {
              "center" : [12 12] ,
              "count" 1,
              "points":[ [12,12]]
             }
        ]
     }


'Algorithm' 카테고리의 다른 글

FDM vs FVM vs FEM  (0) 2021.01.04
ML flow  (0) 2018.11.19
1. TSP ( Travel salesman Person ) - Ant colony  (0) 2018.11.19



YARN(Yet Another Resource Negotiator) 이란?

  • A framework for job scheduling and cluster resource management.

YARN 핵심 구성 요소

  • Resource Manager(RM)

    • YARN 클러스터의 Master 서버로 하나 또는 이중화를 위해 두개의 서버에만 실행됨

    • 클러스터 전체의 리소스를 관리

    • YARN 클러스터의 리소스를 사용하고자 하는 다른 플랫롬으로부터 요청을 받아 리소스 할당(스케줄링)

  • Node Manager(NM)

    • YARN 클러스터의 Worker 서버로 Resource Manager를 제외한 모든 서버에 실행

    • 사용자가 요청한 프로그램을 실행하는 Container를 fork 시키고 Container를 모니터링

    • Container 장애 상황 또는 Container가 요청한 리소스보다 많이 사용하고 있는지 감시(요청한 리소스보다 많이 사용하면 해당 Container를 kill 시킴)

  • Application Master(AM)

    • RM과 협상하여 하둡 클러스터에서 자기가 담당하는 어플리케이션에 필요한 리소스를 할당.
    • NM과 협의하여 자기가 담당하는 어플리케이션을 실행하고 그 결과를 주기적으로 모니터
    • 자기가 담당하는 어플이케이션의 실행 현황을 주기적으로 RM에게 보고합니다.

DEV 시스템 구성

  • EPC VM 4 식 (CPU: 2 Core, Mem: 4GB, HDD: 80GB)

  • Hadoop 3.0 (2017-12-13 GA)

    • 주요 특징 : Erasure Coding in HDFS

  • 구현 알고리즘: k-means



'spark,kafka,hadoop ecosystems > apache.hadoop' 카테고리의 다른 글

hadoop 구성  (0) 2018.11.20
hadoop zipfile as input format  (0) 2018.11.20
hadoop - mapreduce  (0) 2018.11.20

보통 빅데이터를 저장하는 하둡시스템에 관련된 벤더 회사가 언급되면 항상 거론되던 빅3 회사가 있습니다.
(출처: http://daitso.kds.co.kr/60628/)

  • 클라우데라
  • 호톤웍스
  • MapR
호톤웍스 -암바리사용 또는 아래와 같이 수동 설치 가능

설치 정보

Java버전JDK 8u161
설치경로/usr/local/java
Hadoop버전3.0.0
설치경로/usr/local/hadoop

자바 설치

하둡 배포판의 벤더가 인증한 운영체제, 자바, 하둡의 조합을 반드시 확인한 후 신중히 선택.(참고:Hadoop위키 )

Hadoop 3.0.0에 대한 Java 버전은 8을 사용함. (Minimum required Java version increased from Java 7 to Java 8)


유닉스 사용자 계정 생성

다른 서비스와 하둡 프로세스를 구분하기 위해 하둡 전용 사용자 계정을 생성하는것이 좋음.

HDFS, 맵리듀스, YARN서비스는 일반적으로 hdfs, mapred, yarn과 같은 사용자 계정으로 실행됨. → 동일한 hadoop 그룹에 속해야 함

우리는 편의상 hadoop 계정을 이용하여 설치 진행함

VM 구성

os : ubuntu 14.04.  2 core 4G , root 20G, data 80G  VM 4 대 구성

vm host 이름
hadoop01 # Name 노드
datanode01
datanode02
datanode03
  • hdfs data 영역을 위해 /dev/xvdb: 85.9 GB 를 /data/vol1 에  mount 수행

datanodes
hadoop@datanode01:/datasudo fdisk -l
Disk /dev/xvdb: 85.9 GB, 85899345920 bytes
255 heads, 63 sectors/track, 10443 cylinders, total 167772160 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00000000
 
Disk /dev/xvdb doesn't contain a valid partition table
 
Disk /dev/xvda: 21.5 GB, 21474836480 bytes
255 heads, 63 sectors/track, 2610 cylinders, total 41943040 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x000ac649
 
    Device Boot      Start         End      Blocks   Id  System
/dev/xvda1            2048     2000895      999424   83  Linux
/dev/xvda2         2000896     6000639     1999872   82  Linux swap / Solaris
/dev/xvda3         6000640    41940991    17970176   83  Linux
hadoop@datanode01:/datamount
/dev/xvda3 on / type ext4 (rw,errors=remount-ro)
proc on /proc type proc (rw,noexec,nosuid,nodev)
sysfs on /sys type sysfs (rw,noexec,nosuid,nodev)
none on /sys/fs/cgroup type tmpfs (rw)
none on /sys/fs/fuse/connections type fusectl (rw)
none on /sys/kernel/debug type debugfs (rw)
none on /sys/kernel/security type securityfs (rw)
udev on /dev type devtmpfs (rw,mode=0755)
devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=0620)
tmpfs on /run type tmpfs (rw,noexec,nosuid,size=10%,mode=0755)
none on /run/lock type tmpfs (rw,noexec,nosuid,nodev,size=5242880)
none on /run/shm type tmpfs (rw,nosuid,nodev)
none on /run/user type tmpfs (rw,noexec,nosuid,nodev,size=104857600,mode=0755)
none on /sys/fs/pstore type pstore (rw)
/dev/xvda1 on /boot type ext4 (rw)
systemd on /sys/fs/cgroup/systemd type cgroup (rw,noexec,nosuid,nodev,none,name=systemd)
none on /proc/xen type xenfs (rw)
/dev/xvdb on /data/vol1 type ext4 (rw)

하둡설치

다운로드

압축해제

/usr/local, /opt 등 경로에 압축 해제

홈디렉토리는 NFS로 마운트된 경우가 많으므로 하둡 사용자의 홈 디렉토리(/home/hadoop)에 하둡을 설치하는 것은 좋지 않다.


cd /usr/local
sudo tar xzf hadoop-x.y.z.tar.gz


하둡 파일 소유자를 hadoop 사용자와 hadoop그룹으로 변경

sudo chown -R hadoop:hadoop hadoop-x.y.z

환경변수에 HADOOP_HOME 추가

/home/hadoop/.bashrc
export HADOOP_HOME=/usr/local/hadoop-x.y.z
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

SSH구성

원활한 작업을 위해 클러스터에 있는 모든 머신에서 hdfs와 yarn사용자 계정이 암호없이도 접속할 수 있는 SSH설정을 미리 해두는 것이 좋음.(하둡2.0이후 버전에서 mapred 사용자 계정은 SSH를 사용하지 않음)

RSA공개키/개인키 쌍 생성

hdfs 계정과 yarn 계정으로 아래의 명령어를 총 두 번 실행.

ssh-keygen -t rsa -f ~/.ssh/id_rsa
  • 개인키 : -f옵션으로 지정된 ~/.ssh/id_rsa 파일
  • 공개키 : .pub 확장자 추가된 ~/.ssh/id_rsa.pub


클러스터 내에서 접속할 모든 컴퓨터의 ~/.ssh/authorized_keys 파일에 공개키 추가

  • 사용자의 홈 디렉토리가 NFS 파일 시스템에 있는경우 
    아래 명령어를 실행하여 클러스터 내의 모든 컴퓨터가 키를 공유 하도록 만들 수 있다.(hdfs계정으로 수행한 후 yarn계정으로 수행)

    cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
  • 사용자의 홈 디렉토리가 NFS 파일 시스템에 없는 경우

    ssh-copy-id 등 다른 방법으로 공개키를 공유.(ssh-copy-id 사용법)

ssh-agent의 실행 여부를 확인 하고, 마스터에서 워커 컴퓨터로 ssh접속이 되는지 확인.

ssh-add 명령을 실행하여 암호 저장. 암호를 저장한 후에는 암호를 입력하지 않고도 워커 컴퓨터로 ssh접근 가능.

호스트 설정

각 서버의 /etc/hosts 파일 아래 각 서버의 호스트명과 IP를 설정한다.

/etc/hosts
172.27.0.121 hadoop01
172.27.0.32 datanode01
172.27.0.95 datanode02
172.27.0.49 datanode03

하둡 환경 설정

설정 관련 파일은 하둡 기본 디렉토리 하위의 etc/hadoop/ 디렉토리에 위치.

--config 옵션(HADOOP_CONF_DIR 환경변수 설정과 동일 기능)으로 로컬 파일시스템의 특정 디렉터리를 지정하여 데몬을 실행하면 설정 디렉터리를 다른 곳으로 옮길 수 있음.

파일명
형식
설명
hadoop-env.shBash 스크립트하둡구동 스크립트에서 사용하는 환경변수
mapred-env.shBash 스크립트맵리듀스를 구동하는 스크립트에서 사용하는 환경변수
(hadoop-env.sh에서 재정의)
yarn-env.shBash 스크립트YARN을 구동하는 스크립트에서 사용하는 환경변수
(hadoop-env.sh에서 재정의)
core-site.xml하둡설정XMLHDFS, 맵리듀스, YARN에서 공통적으로 사용되는 I/O 설정과 같은 하둡코어를 위한 환경설정 구성
hdfs-site.xml하둡설정XML네임노드, 보조 네임노드, 데이터노드 등과 같은 hdfs 데몬을 위한 환경 설정 구성
mapred-site.xml하둡설정XML잡 히스토리 서버 같은 맵리듀스 데몬을 위한 환경 설정 구성
yarn-site.xml하둡설정XML리소스매니저, 웹어클리케이션 프록시서버, 노드매니저와 같은 YARN데몬을 위한 환경 설정 구성
workers (slaves)일반텍스트데이터노드와 노드매니저를 구동할 컴퓨터의 목록
hadoop-metrics2.propertiesjava 속성메트릭의 표시를 제어하기 위한 속성
log4.properties자바 속성시스템 로그, 네임노드 감사 로그, jvmㅣ 프로세스의 작업로그
hadoop-policy.xml하둡설정XML하둡을 보안 모드로 구동할 때 사용되는 접근 제어 목록에 대한 환경 설정 구성

설정 파일 변경

$HADOOP_HOME/etc/hadoop 디렉토리 안에 있는 아래 네 개의 파일의 설정을 변경한다.

core-site.xml
<configuration>
   <property>
      <name>fs.default.name</name>
      <value>hdfs://hadoop01:9000/</value>
   </property>
</configuration>
mapred-site.xml
<configuration>
   <property>
      <name>mapred.job.tracker</name>
      <value>hadoop01:9001</value>
   </property>
<property>
        <name>mapred.framework.name</name>
        <value>yarn</value>
</property>
</configuration>
hdfs-site.xml
<configuration>
   <property>
      <name>dfs.replication</name>
      <value>3</value>
   </property>
    <!-- name node의 메타데이터 저장경로 -->
    <property>
       <name>dfs.namenode.name.dir</name>
       <value>/data/vol1</value>
   </property>
 
 
    <!-- data node 블록 저장 경로 -->
   <property>
       <name>dfs.datanode.data.dir</name>
       <value>/data/vol1</value>
   </property>
</configuration>
  • dfs.datanode.data.dir : data node 에 hdfs 실제 파일이  저장되는 경로로 file:///data/vol1, file:///data/vol2 형태로  여러 경로 지정 가능하다.
yarn-site.xml
<configuration>
    <!-- Site specific YARN configuration properties -->
  <property>
        <name>yarn.resourcemanager.address</name>
        <value>hadoop01:9010</value>
  </property>
  <property>
        <name>yarn.resourcemanager.resource-tracker.address</name>
        <value>hadoop01:9011</value>
  </property>
  <property>
        <name>yarn.resourcemanager.scheduler.address</name>
        <value>hadoop01:9012</value>
  </property>
  <property>
    <name>yarn.log-aggregation-enable</name>
    <value>true</value>
  </property>
  <property>
      <name>yarn.nodemanager.aux-services</name>
       <value>mapreduce_shuffle</value>
  </property>
  <property>
    <name>yarn.nodemanager.aux-services.mapreduce_shuffle.class</name>
    <value>org.apache.hadoop.mapred.ShuffleHandler</value>
  </property>
  <property>
  <name>yarn.nodemanager.remote-app-log-dir</name>
    <value>/tmp/hadoop/</value>
  </property>
</configuration>

설정파일 적용

rsync명령어를 이용하여 각 datanode 서버들에게도 동일한 설정이 적용되도록 한다.

sudo rsync -avxP /usr/local/hadoop/ hadoop@datanode01:/usr/local/hadoop/ #데이터노드1 적용
sudo rsync -avxP /usr/local/hadoop/ hadoop@datanode02:/usr/local/hadoop/ #데이터노드2 적용
sudo rsync -avxP /usr/local/hadoop/ hadoop@datanode03:/usr/local/hadoop/ #데이터노드3 적용

HDFS 파일시스템 포맷

HDFS를 처음 설치한 경우 사용하기 전에 반드시 파일시스템을 포맷해야 함.

포맷을 통해 저장 디렉토리와 네임노드 초기버전의 영속적인 데이터 구조 생성하는 작업. 데이터 노드는 초기 포맷과정에 전혀 관혀하지 않으므로 파일시스템의 크기를 미리 걱정할 필요 없음.

파일 시스템을 처음 포맷한 후 필요에 따라 증가하는 데이터노드의 수를 기주으로 파일시스템의 크기를 예측하면 됨.

hdfs 계정으로 다음 명령 수행

% hdfs namenode -format

데몬의 시작과 중지

start-all.sh, stop-all.sh 스크립트를 사용 하였습니다. 아래의 내용은 참고용으로 사용해 주세요.

HDFS데몬 시작

hdfs

hdfs계정으로 아래 명령을 실행하면 hdfs데몬이 시작됨.

% start-dfs.sh

yarn

리소스 매니저 역할을 맡은 컴퓨터에서 yarn 계정으로 다음 명령을 수행하여 yarn데몬 실행

% start-yarn.sh

리소스 매니저는 start-yarn.sh 스크립트가 수행된 머신에서만 실행됨.

start-yarn 스크립트 구성

  • 로컬 컴퓨터에서 리소스 매니저 실행
  • slaves 파일의 목록에 있는 각 컴퓨터에서 노드매니저를 시작한다.(3.0에서 workers로 변경)

하둡 제공 스크립트는 내부적으로는 hadoop-deamon.sh 스크립트를 이용하여 데몬을 시작하고 중지함.

앞의 스크립트를 사용하기로 결정한 경우 hadoop-deamon.sh 스크립트를 직접 호출하면 안된다.

mapred

% mr-jobhistory-daemon.sh start historyserver

데몬 상태 확인

Namenode
hadoop@hadoop01:/usr/local/hadoop/etc/hadoop$ jps
29973 SecondaryNameNode
31287 JobHistoryServer
29704 NameNode
1544 Jps
26943 ResourceManager
Namenode
hadoop@datanode01:/usr/local/hadoop/etc/hadoop$ jps
7649 NodeManager
11669 Jps
8508 DataNode

사용자 디렉토리 생성

사용자들이 하둡 클러스터에 접근할 수 있도록 각 사용자 별로 홈 디렉토리를 생성하고 해당 디렉토리에 대한 소유 권한을 부여한다.

% hadoop fs -mkdir -p /user/username
% hadoop fs -chown username:username /user/username

각 디렉토리에 대한 사용량 제한 설정. 아래 명령을 통해 특정 사용자의 디렉토리 용량을 1TB로 제한 가능.

% hdfs dfsadmin -setSpaceQuota 1t /user/username


'spark,kafka,hadoop ecosystems > apache.hadoop' 카테고리의 다른 글

hadoop 과 Yarn  (0) 2018.11.20
hadoop zipfile as input format  (0) 2018.11.20
hadoop - mapreduce  (0) 2018.11.20

http://cutler.io/2012/07/hadoop-processing-zip-files-in-mapreduce/

'spark,kafka,hadoop ecosystems > apache.hadoop' 카테고리의 다른 글

hadoop 과 Yarn  (0) 2018.11.20
hadoop 구성  (0) 2018.11.20
hadoop - mapreduce  (0) 2018.11.20

과연 hadoop map-reduce 관련 프로그래밍을 다시할 일이 있을까 싶은데..

map reduce 쪽에서 설정값들에 의해 고전적인(?) 맵리듀스 프로그래밍 성능이좌우된다.

예를들면 자바로 코딩할때 메모리라든가, 쓰레드 성능 등의 이슈

https://hadoop.apache.org/docs/r2.7.2/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml

namevaluedescription
mapreduce.jobtracker.jobhistory.location
If job tracker is static the history files are stored in this single well known place. If No value is set here, by default, it is in the local file system at ${hadoop.log.dir}/history.
mapreduce.jobtracker.jobhistory.task.numberprogresssplits12Every task attempt progresses from 0.0 to 1.0 [unless it fails or is killed]. We record, for each task attempt, certain statistics over each twelfth of the progress range. You can change the number of intervals we divide the entire range of progress into by setting this property. Higher values give more precision to the recorded data, but costs more memory in the job tracker at runtime. Each increment in this attribute costs 16 bytes per running task.
mapreduce.job.userhistorylocation
User can specify a location to store the history files of a particular job. If nothing is specified, the logs are stored in output directory. The files are stored in "_logs/history/" in the directory. User can stop logging by giving the value "none".
mapreduce.jobtracker.jobhistory.completed.location
The completed job history files are stored at this single well known location. If nothing is specified, the files are stored at ${mapreduce.jobtracker.jobhistory.location}/done.
mapreduce.job.committer.setup.cleanup.neededtruetrue, if job needs job-setup and job-cleanup. false, otherwise
mapreduce.task.io.sort.factor10The number of streams to merge at once while sorting files. This determines the number of open file handles.
mapreduce.task.io.sort.mb100The total amount of buffer memory to use while sorting files, in megabytes. By default, gives each merge stream 1MB, which should minimize seeks.
mapreduce.map.sort.spill.percent0.80The soft limit in the serialization buffer. Once reached, a thread will begin to spill the contents to disk in the background. Note that collection will not block if this threshold is exceeded while a spill is already in progress, so spills may be larger than this threshold when it is set to less than .5
mapreduce.jobtracker.addresslocalThe host and port that the MapReduce job tracker runs at. If "local", then jobs are run in-process as a single map and reduce task.
mapreduce.local.clientfactory.class.nameorg.apache.hadoop.mapred.LocalClientFactoryThis the client factory that is responsible for creating local job runner client
mapreduce.jobtracker.http.address0.0.0.0:50030The job tracker http server address and port the server will listen on. If the port is 0 then the server will start on a free port.
mapreduce.jobtracker.handler.count10The number of server threads for the JobTracker. This should be roughly 4% of the number of tasktracker nodes.
mapreduce.tasktracker.report.address127.0.0.1:0The interface and port that task tracker server listens on. Since it is only connected to by the tasks, it uses the local interface. EXPERT ONLY. Should only be changed if your host does not have the loopback interface.
mapreduce.cluster.local.dir${hadoop.tmp.dir}/mapred/localThe local directory where MapReduce stores intermediate data files. May be a comma-separated list of directories on different devices in order to spread disk i/o. Directories that do not exist are ignored.
mapreduce.jobtracker.system.dir${hadoop.tmp.dir}/mapred/systemThe directory where MapReduce stores control files.
mapreduce.jobtracker.staging.root.dir${hadoop.tmp.dir}/mapred/stagingThe root of the staging area for users' job files In practice, this should be the directory where users' home directories are located (usually /user)
mapreduce.cluster.temp.dir${hadoop.tmp.dir}/mapred/tempA shared directory for temporary files.
mapreduce.tasktracker.local.dir.minspacestart0If the space in mapreduce.cluster.local.dir drops under this, do not ask for more tasks. Value in bytes.
mapreduce.tasktracker.local.dir.minspacekill0If the space in mapreduce.cluster.local.dir drops under this, do not ask more tasks until all the current ones have finished and cleaned up. Also, to save the rest of the tasks we have running, kill one of them, to clean up some space. Start with the reduce tasks, then go with the ones that have finished the least. Value in bytes.
mapreduce.jobtracker.expire.trackers.interval600000Expert: The time-interval, in miliseconds, after which a tasktracker is declared 'lost' if it doesn't send heartbeats.
mapreduce.tasktracker.instrumentationorg.apache.hadoop.mapred.TaskTrackerMetricsInstExpert: The instrumentation class to associate with each TaskTracker.
mapreduce.tasktracker.resourcecalculatorplugin
Name of the class whose instance will be used to query resource information on the tasktracker. The class must be an instance of org.apache.hadoop.util.ResourceCalculatorPlugin. If the value is null, the tasktracker attempts to use a class appropriate to the platform. Currently, the only platform supported is Linux.
mapreduce.tasktracker.taskmemorymanager.monitoringinterval5000The interval, in milliseconds, for which the tasktracker waits between two cycles of monitoring its tasks' memory usage. Used only if tasks' memory management is enabled via mapred.tasktracker.tasks.maxmemory.
mapreduce.tasktracker.tasks.sleeptimebeforesigkill5000The time, in milliseconds, the tasktracker waits for sending a SIGKILL to a task, after it has been sent a SIGTERM. This is currently not used on WINDOWS where tasks are just sent a SIGTERM.
mapreduce.job.maps2The default number of map tasks per job. Ignored when mapreduce.jobtracker.address is "local".
mapreduce.job.reduces1The default number of reduce tasks per job. Typically set to 99% of the cluster's reduce capacity, so that if a node fails the reduces can still be executed in a single wave. Ignored when mapreduce.jobtracker.address is "local".
mapreduce.jobtracker.restart.recoverfalse"true" to enable (job) recovery upon restart, "false" to start afresh
mapreduce.jobtracker.jobhistory.block.size3145728The block size of the job history file. Since the job recovery uses job history, its important to dump job history to disk as soon as possible. Note that this is an expert level parameter. The default value is set to 3 MB.
mapreduce.jobtracker.taskschedulerorg.apache.hadoop.mapred.JobQueueTaskSchedulerThe class responsible for scheduling the tasks.
mapreduce.job.running.map.limit0The maximum number of simultaneous map tasks per job. There is no limit if this value is 0 or negative.
mapreduce.job.running.reduce.limit0The maximum number of simultaneous reduce tasks per job. There is no limit if this value is 0 or negative.
mapreduce.job.reducer.preempt.delay.sec0The threshold in terms of seconds after which an unsatisfied mapper request triggers reducer preemption to free space. Default 0 implies that the reduces should be preempted immediately after allocation if there is currently no room for newly allocated mappers.
mapreduce.job.max.split.locations10The max number of block locations to store for each split for locality calculation.
mapreduce.job.split.metainfo.maxsize10000000The maximum permissible size of the split metainfo file. The JobTracker won't attempt to read split metainfo files bigger than the configured value. No limits if set to -1.
mapreduce.jobtracker.taskscheduler.maxrunningtasks.perjob
The maximum number of running tasks for a job before it gets preempted. No limits if undefined.
mapreduce.map.maxattempts4Expert: The maximum number of attempts per map task. In other words, framework will try to execute a map task these many number of times before giving up on it.
mapreduce.reduce.maxattempts4Expert: The maximum number of attempts per reduce task. In other words, framework will try to execute a reduce task these many number of times before giving up on it.
mapreduce.reduce.shuffle.fetch.retry.enabled${yarn.nodemanager.recovery.enabled}Set to enable fetch retry during host restart.
mapreduce.reduce.shuffle.fetch.retry.interval-ms1000Time of interval that fetcher retry to fetch again when some non-fatal failure happens because of some events like NM restart.
mapreduce.reduce.shuffle.fetch.retry.timeout-ms30000Timeout value for fetcher to retry to fetch again when some non-fatal failure happens because of some events like NM restart.
mapreduce.reduce.shuffle.retry-delay.max.ms60000The maximum number of ms the reducer will delay before retrying to download map data.
mapreduce.reduce.shuffle.parallelcopies5The default number of parallel transfers run by reduce during the copy(shuffle) phase.
mapreduce.reduce.shuffle.connect.timeout180000Expert: The maximum amount of time (in milli seconds) reduce task spends in trying to connect to a tasktracker for getting map output.
mapreduce.reduce.shuffle.read.timeout180000Expert: The maximum amount of time (in milli seconds) reduce task waits for map output data to be available for reading after obtaining connection.
mapreduce.shuffle.connection-keep-alive.enablefalseset to true to support keep-alive connections.
mapreduce.shuffle.connection-keep-alive.timeout5The number of seconds a shuffle client attempts to retain http connection. Refer "Keep-Alive: timeout=" header in Http specification
mapreduce.task.timeout600000The number of milliseconds before a task will be terminated if it neither reads an input, writes an output, nor updates its status string. A value of 0 disables the timeout.
mapreduce.tasktracker.map.tasks.maximum2The maximum number of map tasks that will be run simultaneously by a task tracker.
mapreduce.tasktracker.reduce.tasks.maximum2The maximum number of reduce tasks that will be run simultaneously by a task tracker.
mapreduce.map.memory.mb1024The amount of memory to request from the scheduler for each map task.
mapreduce.map.cpu.vcores1The number of virtual cores to request from the scheduler for each map task.
mapreduce.reduce.memory.mb1024The amount of memory to request from the scheduler for each reduce task.
mapreduce.reduce.cpu.vcores1The number of virtual cores to request from the scheduler for each reduce task.
mapreduce.jobtracker.retiredjobs.cache.size1000The number of retired job status to keep in the cache.
mapreduce.tasktracker.outofband.heartbeatfalseExpert: Set this to true to let the tasktracker send an out-of-band heartbeat on task-completion for better latency.
mapreduce.jobtracker.jobhistory.lru.cache.size5The number of job history files loaded in memory. The jobs are loaded when they are first accessed. The cache is cleared based on LRU.
mapreduce.jobtracker.instrumentationorg.apache.hadoop.mapred.JobTrackerMetricsInstExpert: The instrumentation class to associate with each JobTracker.
mapred.child.java.opts-Xmx200mJava opts for the task processes. The following symbol, if present, will be interpolated: @taskid@ is replaced by current TaskID. Any other occurrences of '@' will go unchanged. For example, to enable verbose gc logging to a file named for the taskid in /tmp and to set the heap maximum to be a gigabyte, pass a 'value' of: -Xmx1024m -verbose:gc -Xloggc:/tmp/@taskid@.gc Usage of -Djava.library.path can cause programs to no longer function if hadoop native libraries are used. These values should instead be set as part of LD_LIBRARY_PATH in the map / reduce JVM env using the mapreduce.map.env and mapreduce.reduce.env config settings.
mapred.child.env
User added environment variables for the task processes. Example : 1) A=foo This will set the env variable A to foo 2) B=$B:c This is inherit nodemanager's B env variable on Unix. 3) B=%B%;c This is inherit nodemanager's B env variable on Windows.
mapreduce.admin.user.env
Expert: Additional execution environment entries for map and reduce task processes. This is not an additive property. You must preserve the original value if you want your map and reduce tasks to have access to native libraries (compression, etc). When this value is empty, the command to set execution envrionment will be OS dependent: For linux, use LD_LIBRARY_PATH=$HADOOP_COMMON_HOME/lib/native. For windows, use PATH = %PATH%;%HADOOP_COMMON_HOME%\\bin.
mapreduce.map.log.levelINFOThe logging level for the map task. The allowed levels are: OFF, FATAL, ERROR, WARN, INFO, DEBUG, TRACE and ALL. The setting here could be overridden if "mapreduce.job.log4j-properties-file" is set.
mapreduce.reduce.log.levelINFOThe logging level for the reduce task. The allowed levels are: OFF, FATAL, ERROR, WARN, INFO, DEBUG, TRACE and ALL. The setting here could be overridden if "mapreduce.job.log4j-properties-file" is set.
mapreduce.map.cpu.vcores1The number of virtual cores required for each map task.
mapreduce.reduce.cpu.vcores1The number of virtual cores required for each reduce task.
mapreduce.reduce.merge.inmem.threshold1000The threshold, in terms of the number of files for the in-memory merge process. When we accumulate threshold number of files we initiate the in-memory merge and spill to disk. A value of 0 or less than 0 indicates we want to DON'T have any threshold and instead depend only on the ramfs's memory consumption to trigger the merge.
mapreduce.reduce.shuffle.merge.percent0.66The usage threshold at which an in-memory merge will be initiated, expressed as a percentage of the total memory allocated to storing in-memory map outputs, as defined by mapreduce.reduce.shuffle.input.buffer.percent.
mapreduce.reduce.shuffle.input.buffer.percent0.70The percentage of memory to be allocated from the maximum heap size to storing map outputs during the shuffle.
mapreduce.reduce.input.buffer.percent0.0The percentage of memory- relative to the maximum heap size- to retain map outputs during the reduce. When the shuffle is concluded, any remaining map outputs in memory must consume less than this threshold before the reduce can begin.
mapreduce.reduce.shuffle.memory.limit.percent0.25Expert: Maximum percentage of the in-memory limit that a single shuffle can consume
mapreduce.shuffle.ssl.enabledfalseWhether to use SSL for for the Shuffle HTTP endpoints.
mapreduce.shuffle.ssl.file.buffer.size65536Buffer size for reading spills from file when using SSL.
mapreduce.shuffle.max.connections0Max allowed connections for the shuffle. Set to 0 (zero) to indicate no limit on the number of connections.
mapreduce.shuffle.max.threads0Max allowed threads for serving shuffle connections. Set to zero to indicate the default of 2 times the number of available processors (as reported by Runtime.availableProcessors()). Netty is used to serve requests, so a thread is not needed for each connection.
mapreduce.shuffle.transferTo.allowed
This option can enable/disable using nio transferTo method in the shuffle phase. NIO transferTo does not perform well on windows in the shuffle phase. Thus, with this configuration property it is possible to disable it, in which case custom transfer method will be used. Recommended value is false when running Hadoop on Windows. For Linux, it is recommended to set it to true. If nothing is set then the default value is false for Windows, and true for Linux.
mapreduce.shuffle.transfer.buffer.size131072This property is used only if mapreduce.shuffle.transferTo.allowed is set to false. In that case, this property defines the size of the buffer used in the buffer copy code for the shuffle phase. The size of this buffer determines the size of the IO requests.
mapreduce.reduce.markreset.buffer.percent0.0The percentage of memory -relative to the maximum heap size- to be used for caching values when using the mark-reset functionality.
mapreduce.map.speculativetrueIf true, then multiple instances of some map tasks may be executed in parallel.
mapreduce.reduce.speculativetrueIf true, then multiple instances of some reduce tasks may be executed in parallel.
mapreduce.job.speculative.speculative-cap-running-tasks0.1The max percent (0-1) of running tasks that can be speculatively re-executed at any time.
mapreduce.job.speculative.speculative-cap-total-tasks0.01The max percent (0-1) of all tasks that can be speculatively re-executed at any time.
mapreduce.job.speculative.minimum-allowed-tasks10The minimum allowed tasks that can be speculatively re-executed at any time.
mapreduce.job.speculative.retry-after-no-speculate1000The waiting time(ms) to do next round of speculation if there is no task speculated in this round.
mapreduce.job.speculative.retry-after-speculate15000The waiting time(ms) to do next round of speculation if there are tasks speculated in this round.
mapreduce.job.map.output.collector.classorg.apache.hadoop.mapred.MapTask$MapOutputBufferThe MapOutputCollector implementation(s) to use. This may be a comma-separated list of class names, in which case the map task will try to initialize each of the collectors in turn. The first to successfully initialize will be used.
mapreduce.job.speculative.slowtaskthreshold1.0The number of standard deviations by which a task's ave progress-rates must be lower than the average of all running tasks' for the task to be considered too slow.
mapreduce.job.jvm.numtasks1How many tasks to run per jvm. If set to -1, there is no limit.
mapreduce.job.ubertask.enablefalseWhether to enable the small-jobs "ubertask" optimization, which runs "sufficiently small" jobs sequentially within a single JVM. "Small" is defined by the following maxmaps, maxreduces, and maxbytes settings. Note that configurations for application masters also affect the "Small" definition - yarn.app.mapreduce.am.resource.mb must be larger than both mapreduce.map.memory.mb and mapreduce.reduce.memory.mb, and yarn.app.mapreduce.am.resource.cpu-vcores must be larger than both mapreduce.map.cpu.vcores and mapreduce.reduce.cpu.vcores to enable ubertask. Users may override this value.
mapreduce.job.ubertask.maxmaps9Threshold for number of maps, beyond which job is considered too big for the ubertasking optimization. Users may override this value, but only downward.
mapreduce.job.ubertask.maxreduces1Threshold for number of reduces, beyond which job is considered too big for the ubertasking optimization. CURRENTLY THE CODE CANNOT SUPPORT MORE THAN ONE REDUCE and will ignore larger values. (Zero is a valid max, however.) Users may override this value, but only downward.
mapreduce.job.ubertask.maxbytes
Threshold for number of input bytes, beyond which job is considered too big for the ubertasking optimization. If no value is specified, dfs.block.size is used as a default. Be sure to specify a default value in mapred-site.xml if the underlying filesystem is not HDFS. Users may override this value, but only downward.
mapreduce.job.emit-timeline-datafalseSpecifies if the Application Master should emit timeline data to the timeline server. Individual jobs can override this value.
mapreduce.input.fileinputformat.split.minsize0The minimum size chunk that map input should be split into. Note that some file formats may have minimum split sizes that take priority over this setting.
mapreduce.input.fileinputformat.list-status.num-threads1The number of threads to use to list and fetch block locations for the specified input paths. Note: multiple threads should not be used if a custom non thread-safe path filter is used.
mapreduce.jobtracker.maxtasks.perjob-1The maximum number of tasks for a single job. A value of -1 indicates that there is no maximum.
mapreduce.input.lineinputformat.linespermap1When using NLineInputFormat, the number of lines of input data to include in each split.
mapreduce.client.submit.file.replication10The replication level for submitted job files. This should be around the square root of the number of nodes.
mapreduce.tasktracker.dns.interfacedefaultThe name of the Network Interface from which a task tracker should report its IP address.
mapreduce.tasktracker.dns.nameserverdefaultThe host name or IP address of the name server (DNS) which a TaskTracker should use to determine the host name used by the JobTracker for communication and display purposes.
mapreduce.tasktracker.http.threads40The number of worker threads that for the http server. This is used for map output fetching
mapreduce.tasktracker.http.address0.0.0.0:50060The task tracker http server address and port. If the port is 0 then the server will start on a free port.
mapreduce.task.files.preserve.failedtasksfalseShould the files for failed tasks be kept. This should only be used on jobs that are failing, because the storage is never reclaimed. It also prevents the map outputs from being erased from the reduce directory as they are consumed.
mapreduce.output.fileoutputformat.compressfalseShould the job outputs be compressed?
mapreduce.output.fileoutputformat.compress.typeRECORDIf the job outputs are to compressed as SequenceFiles, how should they be compressed? Should be one of NONE, RECORD or BLOCK.
mapreduce.output.fileoutputformat.compress.codecorg.apache.hadoop.io.compress.DefaultCodecIf the job outputs are compressed, how should they be compressed?
mapreduce.map.output.compressfalseShould the outputs of the maps be compressed before being sent across the network. Uses SequenceFile compression.
mapreduce.map.output.compress.codecorg.apache.hadoop.io.compress.DefaultCodecIf the map outputs are compressed, how should they be compressed?
map.sort.classorg.apache.hadoop.util.QuickSortThe default sort class for sorting keys.
mapreduce.task.userlog.limit.kb0The maximum size of user-logs of each task in KB. 0 disables the cap.
yarn.app.mapreduce.am.container.log.limit.kb0The maximum size of the MRAppMaster attempt container logs in KB. 0 disables the cap.
yarn.app.mapreduce.task.container.log.backups0Number of backup files for task logs when using ContainerRollingLogAppender (CRLA). See org.apache.log4j.RollingFileAppender.maxBackupIndex. By default, ContainerLogAppender (CLA) is used, and container logs are not rolled. CRLA is enabled for tasks when both mapreduce.task.userlog.limit.kb and yarn.app.mapreduce.task.container.log.backups are greater than zero.
yarn.app.mapreduce.am.container.log.backups0Number of backup files for the ApplicationMaster logs when using ContainerRollingLogAppender (CRLA). See org.apache.log4j.RollingFileAppender.maxBackupIndex. By default, ContainerLogAppender (CLA) is used, and container logs are not rolled. CRLA is enabled for the ApplicationMaster when both mapreduce.task.userlog.limit.kb and yarn.app.mapreduce.am.container.log.backups are greater than zero.
yarn.app.mapreduce.shuffle.log.separatetrueIf enabled ('true') logging generated by the client-side shuffle classes in a reducer will be written in a dedicated log file 'syslog.shuffle' instead of 'syslog'.
yarn.app.mapreduce.shuffle.log.limit.kb0Maximum size of the syslog.shuffle file in kilobytes (0 for no limit).
yarn.app.mapreduce.shuffle.log.backups0If yarn.app.mapreduce.shuffle.log.limit.kb and yarn.app.mapreduce.shuffle.log.backups are greater than zero then a ContainerRollngLogAppender is used instead of ContainerLogAppender for syslog.shuffle. See org.apache.log4j.RollingFileAppender.maxBackupIndex
mapreduce.job.userlog.retain.hours24The maximum time, in hours, for which the user-logs are to be retained after the job completion.
mapreduce.jobtracker.hosts.filename
Names a file that contains the list of nodes that may connect to the jobtracker. If the value is empty, all hosts are permitted.
mapreduce.jobtracker.hosts.exclude.filename
Names a file that contains the list of hosts that should be excluded by the jobtracker. If the value is empty, no hosts are excluded.
mapreduce.jobtracker.heartbeats.in.second100Expert: Approximate number of heart-beats that could arrive at JobTracker in a second. Assuming each RPC can be processed in 10msec, the default value is made 100 RPCs in a second.
mapreduce.jobtracker.tasktracker.maxblacklists4The number of blacklists for a taskTracker by various jobs after which the task tracker could be blacklisted across all jobs. The tracker will be given a tasks later (after a day). The tracker will become a healthy tracker after a restart.
mapreduce.job.maxtaskfailures.per.tracker3The number of task-failures on a tasktracker of a given job after which new tasks of that job aren't assigned to it. It MUST be less than mapreduce.map.maxattempts and mapreduce.reduce.maxattempts otherwise the failed task will never be tried on a different node.
mapreduce.client.output.filterFAILEDThe filter for controlling the output of the task's userlogs sent to the console of the JobClient. The permissible options are: NONE, KILLED, FAILED, SUCCEEDED and ALL.
mapreduce.client.completion.pollinterval5000The interval (in milliseconds) between which the JobClient polls the JobTracker for updates about job status. You may want to set this to a lower value to make tests run faster on a single node system. Adjusting this value in production may lead to unwanted client-server traffic.
mapreduce.client.progressmonitor.pollinterval1000The interval (in milliseconds) between which the JobClient reports status to the console and checks for job completion. You may want to set this to a lower value to make tests run faster on a single node system. Adjusting this value in production may lead to unwanted client-server traffic.
mapreduce.jobtracker.persist.jobstatus.activetrueIndicates if persistency of job status information is active or not.
mapreduce.jobtracker.persist.jobstatus.hours1The number of hours job status information is persisted in DFS. The job status information will be available after it drops of the memory queue and between jobtracker restarts. With a zero value the job status information is not persisted at all in DFS.
mapreduce.jobtracker.persist.jobstatus.dir/jobtracker/jobsInfoThe directory where the job status information is persisted in a file system to be available after it drops of the memory queue and between jobtracker restarts.
mapreduce.task.profilefalseTo set whether the system should collect profiler information for some of the tasks in this job? The information is stored in the user log directory. The value is "true" if task profiling is enabled.
mapreduce.task.profile.maps0-2To set the ranges of map tasks to profile. mapreduce.task.profile has to be set to true for the value to be accounted.
mapreduce.task.profile.reduces0-2To set the ranges of reduce tasks to profile. mapreduce.task.profile has to be set to true for the value to be accounted.
mapreduce.task.profile.params-agentlib:hprof=cpu=samples,heap=sites,force=n,thread=y,verbose=n,file=%sJVM profiler parameters used to profile map and reduce task attempts. This string may contain a single format specifier %s that will be replaced by the path to profile.out in the task attempt log directory. To specify different profiling options for map tasks and reduce tasks, more specific parameters mapreduce.task.profile.map.params and mapreduce.task.profile.reduce.params should be used.
mapreduce.task.profile.map.params${mapreduce.task.profile.params}Map-task-specific JVM profiler parameters. See mapreduce.task.profile.params
mapreduce.task.profile.reduce.params${mapreduce.task.profile.params}Reduce-task-specific JVM profiler parameters. See mapreduce.task.profile.params
mapreduce.task.skip.start.attempts2The number of Task attempts AFTER which skip mode will be kicked off. When skip mode is kicked off, the tasks reports the range of records which it will process next, to the TaskTracker. So that on failures, TT knows which ones are possibly the bad records. On further executions, those are skipped.
mapreduce.map.skip.proc.count.autoincrtrueThe flag which if set to true, SkipBadRecords.COUNTER_MAP_PROCESSED_RECORDS is incremented by MapRunner after invoking the map function. This value must be set to false for applications which process the records asynchronously or buffer the input records. For example streaming. In such cases applications should increment this counter on their own.
mapreduce.reduce.skip.proc.count.autoincrtrueThe flag which if set to true, SkipBadRecords.COUNTER_REDUCE_PROCESSED_GROUPS is incremented by framework after invoking the reduce function. This value must be set to false for applications which process the records asynchronously or buffer the input records. For example streaming. In such cases applications should increment this counter on their own.
mapreduce.job.skip.outdir
If no value is specified here, the skipped records are written to the output directory at _logs/skip. User can stop writing skipped records by giving the value "none".
mapreduce.map.skip.maxrecords0The number of acceptable skip records surrounding the bad record PER bad record in mapper. The number includes the bad record as well. To turn the feature of detection/skipping of bad records off, set the value to 0. The framework tries to narrow down the skipped range by retrying until this threshold is met OR all attempts get exhausted for this task. Set the value to Long.MAX_VALUE to indicate that framework need not try to narrow down. Whatever records(depends on application) get skipped are acceptable.
mapreduce.reduce.skip.maxgroups0The number of acceptable skip groups surrounding the bad group PER bad group in reducer. The number includes the bad group as well. To turn the feature of detection/skipping of bad groups off, set the value to 0. The framework tries to narrow down the skipped range by retrying until this threshold is met OR all attempts get exhausted for this task. Set the value to Long.MAX_VALUE to indicate that framework need not try to narrow down. Whatever groups(depends on application) get skipped are acceptable.
mapreduce.ifile.readaheadtrueConfiguration key to enable/disable IFile readahead.
mapreduce.ifile.readahead.bytes4194304Configuration key to set the IFile readahead length in bytes.
mapreduce.jobtracker.taskcache.levels2This is the max level of the task cache. For example, if the level is 2, the tasks cached are at the host level and at the rack level.
mapreduce.job.queuenamedefaultQueue to which a job is submitted. This must match one of the queues defined in mapred-queues.xml for the system. Also, the ACL setup for the queue must allow the current user to submit a job to the queue. Before specifying a queue, ensure that the system is configured with the queue, and access is allowed for submitting jobs to the queue.
mapreduce.job.tags
Tags for the job that will be passed to YARN at submission time. Queries to YARN for applications can filter on these tags.
mapreduce.cluster.acls.enabledfalseSpecifies whether ACLs should be checked for authorization of users for doing various queue and job level operations. ACLs are disabled by default. If enabled, access control checks are made by JobTracker and TaskTracker when requests are made by users for queue operations like submit job to a queue and kill a job in the queue and job operations like viewing the job-details (See mapreduce.job.acl-view-job) or for modifying the job (See mapreduce.job.acl-modify-job) using Map/Reduce APIs, RPCs or via the console and web user interfaces. For enabling this flag(mapreduce.cluster.acls.enabled), this is to be set to true in mapred-site.xml on JobTracker node and on all TaskTracker nodes.
mapreduce.job.acl-modify-job
Job specific access-control list for 'modifying' the job. It is only used if authorization is enabled in Map/Reduce by setting the configuration property mapreduce.cluster.acls.enabled to true. This specifies the list of users and/or groups who can do modification operations on the job. For specifying a list of users and groups the format to use is "user1,user2 group1,group". If set to '*', it allows all users/groups to modify this job. If set to ' '(i.e. space), it allows none. This configuration is used to guard all the modifications with respect to this job and takes care of all the following operations: o killing this job o killing a task of this job, failing a task of this job o setting the priority of this job Each of these operations are also protected by the per-queue level ACL "acl-administer-jobs" configured via mapred-queues.xml. So a caller should have the authorization to satisfy either the queue-level ACL or the job-level ACL. Irrespective of this ACL configuration, (a) job-owner, (b) the user who started the cluster, (c) members of an admin configured supergroup configured via mapreduce.cluster.permissions.supergroup and (d) queue administrators of the queue to which this job was submitted to configured via acl-administer-jobs for the specific queue in mapred-queues.xml can do all the modification operations on a job. By default, nobody else besides job-owner, the user who started the cluster, members of supergroup and queue administrators can perform modification operations on a job.
mapreduce.job.acl-view-job
Job specific access-control list for 'viewing' the job. It is only used if authorization is enabled in Map/Reduce by setting the configuration property mapreduce.cluster.acls.enabled to true. This specifies the list of users and/or groups who can view private details about the job. For specifying a list of users and groups the format to use is "user1,user2 group1,group". If set to '*', it allows all users/groups to modify this job. If set to ' '(i.e. space), it allows none. This configuration is used to guard some of the job-views and at present only protects APIs that can return possibly sensitive information of the job-owner like o job-level counters o task-level counters o tasks' diagnostic information o task-logs displayed on the TaskTracker web-UI and o job.xml showed by the JobTracker's web-UI Every other piece of information of jobs is still accessible by any other user, for e.g., JobStatus, JobProfile, list of jobs in the queue, etc. Irrespective of this ACL configuration, (a) job-owner, (b) the user who started the cluster, (c) members of an admin configured supergroup configured via mapreduce.cluster.permissions.supergroup and (d) queue administrators of the queue to which this job was submitted to configured via acl-administer-jobs for the specific queue in mapred-queues.xml can do all the view operations on a job. By default, nobody else besides job-owner, the user who started the cluster, memebers of supergroup and queue administrators can perform view operations on a job.
mapreduce.tasktracker.indexcache.mb10The maximum memory that a task tracker allows for the index cache that is used when serving map outputs to reducers.
mapreduce.job.token.tracking.ids.enabledfalseWhether to write tracking ids of tokens to job-conf. When true, the configuration property "mapreduce.job.token.tracking.ids" is set to the token-tracking-ids of the job
mapreduce.job.token.tracking.ids
When mapreduce.job.token.tracking.ids.enabled is set to true, this is set by the framework to the token-tracking-ids used by the job.
mapreduce.task.merge.progress.records10000The number of records to process during merge before sending a progress notification to the TaskTracker.
mapreduce.task.combine.progress.records10000The number of records to process during combine output collection before sending a progress notification.
mapreduce.job.reduce.slowstart.completedmaps0.05Fraction of the number of maps in the job which should be complete before reduces are scheduled for the job.
mapreduce.job.complete.cancel.delegation.tokenstrueif false - do not unregister/cancel delegation tokens from renewal, because same tokens may be used by spawned jobs
mapreduce.tasktracker.taskcontrollerorg.apache.hadoop.mapred.DefaultTaskControllerTaskController which is used to launch and manage task execution
mapreduce.tasktracker.group
Expert: Group to which TaskTracker belongs. If LinuxTaskController is configured via mapreduce.tasktracker.taskcontroller, the group owner of the task-controller binary should be same as this group.
mapreduce.shuffle.port13562Default port that the ShuffleHandler will run on. ShuffleHandler is a service run at the NodeManager to facilitate transfers of intermediate Map outputs to requesting Reducers.
mapreduce.job.reduce.shuffle.consumer.plugin.classorg.apache.hadoop.mapreduce.task.reduce.ShuffleName of the class whose instance will be used to send shuffle requests by reducetasks of this job. The class must be an instance of org.apache.hadoop.mapred.ShuffleConsumerPlugin.
mapreduce.tasktracker.healthchecker.script.path
Absolute path to the script which is periodicallyrun by the node health monitoring service to determine if the node is healthy or not. If the value of this key is empty or the file does not exist in the location configured here, the node health monitoring service is not started.
mapreduce.tasktracker.healthchecker.interval60000Frequency of the node health script to be run, in milliseconds
mapreduce.tasktracker.healthchecker.script.timeout600000Time after node health script should be killed if unresponsive and considered that the script has failed.
mapreduce.tasktracker.healthchecker.script.args
List of arguments which are to be passed to node health script when it is being launched comma seperated.
mapreduce.job.counters.limit120Limit on the number of user counters allowed per job.
mapreduce.framework.namelocalThe runtime framework for executing MapReduce jobs. Can be one of local, classic or yarn.
yarn.app.mapreduce.am.staging-dir/tmp/hadoop-yarn/stagingThe staging dir used while submitting jobs.
mapreduce.am.max-attempts2The maximum number of application attempts. It is a application-specific setting. It should not be larger than the global number set by resourcemanager. Otherwise, it will be override. The default number is set to 2, to allow at least one retry for AM.
mapreduce.job.end-notification.url
Indicates url which will be called on completion of job to inform end status of job. User can give at most 2 variables with URI : $jobId and $jobStatus. If they are present in URI, then they will be replaced by their respective values.
mapreduce.job.end-notification.retry.attempts0The number of times the submitter of the job wants to retry job end notification if it fails. This is capped by mapreduce.job.end-notification.max.attempts
mapreduce.job.end-notification.retry.interval1000The number of milliseconds the submitter of the job wants to wait before job end notification is retried if it fails. This is capped by mapreduce.job.end-notification.max.retry.interval
mapreduce.job.end-notification.max.attempts5The maximum number of times a URL will be read for providing job end notification. Cluster administrators can set this to limit how long after end of a job, the Application Master waits before exiting. Must be marked as final to prevent users from overriding this.
mapreduce.job.log4j-properties-file
Used to override the default settings of log4j in container-log4j.properties for NodeManager. Like container-log4j.properties, it requires certain framework appenders properly defined in this overriden file. The file on the path will be added to distributed cache and classpath. If no-scheme is given in the path, it defaults to point to a log4j file on the local FS.
mapreduce.job.end-notification.max.retry.interval5000The maximum amount of time (in milliseconds) to wait before retrying job end notification. Cluster administrators can set this to limit how long the Application Master waits before exiting. Must be marked as final to prevent users from overriding this.
yarn.app.mapreduce.am.env
User added environment variables for the MR App Master processes. Example : 1) A=foo This will set the env variable A to foo 2) B=$B:c This is inherit tasktracker's B env variable.
yarn.app.mapreduce.am.admin.user.env
Environment variables for the MR App Master processes for admin purposes. These values are set first and can be overridden by the user env (yarn.app.mapreduce.am.env) Example : 1) A=foo This will set the env variable A to foo 2) B=$B:c This is inherit app master's B env variable.
yarn.app.mapreduce.am.command-opts-Xmx1024mJava opts for the MR App Master processes. The following symbol, if present, will be interpolated: @taskid@ is replaced by current TaskID. Any other occurrences of '@' will go unchanged. For example, to enable verbose gc logging to a file named for the taskid in /tmp and to set the heap maximum to be a gigabyte, pass a 'value' of: -Xmx1024m -verbose:gc -Xloggc:/tmp/@taskid@.gc Usage of -Djava.library.path can cause programs to no longer function if hadoop native libraries are used. These values should instead be set as part of LD_LIBRARY_PATH in the map / reduce JVM env using the mapreduce.map.env and mapreduce.reduce.env config settings.
yarn.app.mapreduce.am.admin-command-opts
Java opts for the MR App Master processes for admin purposes. It will appears before the opts set by yarn.app.mapreduce.am.command-opts and thus its options can be overridden user. Usage of -Djava.library.path can cause programs to no longer function if hadoop native libraries are used. These values should instead be set as part of LD_LIBRARY_PATH in the map / reduce JVM env using the mapreduce.map.env and mapreduce.reduce.env config settings.
yarn.app.mapreduce.am.job.task.listener.thread-count30The number of threads used to handle RPC calls in the MR AppMaster from remote tasks
yarn.app.mapreduce.am.job.client.port-range
Range of ports that the MapReduce AM can use when binding. Leave blank if you want all possible ports. For example 50000-50050,50100-50200
yarn.app.mapreduce.am.job.committer.cancel-timeout60000The amount of time in milliseconds to wait for the output committer to cancel an operation if the job is killed
yarn.app.mapreduce.am.job.committer.commit-window10000Defines a time window in milliseconds for output commit operations. If contact with the RM has occurred within this window then commits are allowed, otherwise the AM will not allow output commits until contact with the RM has been re-established.
mapreduce.fileoutputcommitter.algorithm.version1The file output committer algorithm version valid algorithm version number: 1 or 2 default to 1, which is the original algorithm In algorithm version 1, 1. commitTask will rename directory $joboutput/_temporary/$appAttemptID/_temporary/$taskAttemptID/ to $joboutput/_temporary/$appAttemptID/$taskID/ 2. recoverTask will also do a rename $joboutput/_temporary/$appAttemptID/$taskID/ to $joboutput/_temporary/($appAttemptID + 1)/$taskID/ 3. commitJob will merge every task output file in $joboutput/_temporary/$appAttemptID/$taskID/ to $joboutput/, then it will delete $joboutput/_temporary/ and write $joboutput/_SUCCESS It has a performance regression, which is discussed in MAPREDUCE-4815. If a job generates many files to commit then the commitJob method call at the end of the job can take minutes. the commit is single-threaded and waits until all tasks have completed before commencing. algorithm version 2 will change the behavior of commitTask, recoverTask, and commitJob. 1. commitTask will rename all files in $joboutput/_temporary/$appAttemptID/_temporary/$taskAttemptID/ to $joboutput/ 2. recoverTask actually doesn't require to do anything, but for upgrade from version 1 to version 2 case, it will check if there are any files in $joboutput/_temporary/($appAttemptID - 1)/$taskID/ and rename them to $joboutput/ 3. commitJob can simply delete $joboutput/_temporary and write $joboutput/_SUCCESS This algorithm will reduce the output commit time for large jobs by having the tasks commit directly to the final output directory as they were completing and commitJob had very little to do.
yarn.app.mapreduce.am.scheduler.heartbeat.interval-ms1000The interval in ms at which the MR AppMaster should send heartbeats to the ResourceManager
yarn.app.mapreduce.client-am.ipc.max-retries3The number of client retries to the AM - before reconnecting to the RM to fetch Application Status.
yarn.app.mapreduce.client-am.ipc.max-retries-on-timeouts3The number of client retries on socket timeouts to the AM - before reconnecting to the RM to fetch Application Status.
yarn.app.mapreduce.client.max-retries3The number of client retries to the RM/HS before throwing exception. This is a layer above the ipc.
yarn.app.mapreduce.am.resource.mb1536The amount of memory the MR AppMaster needs.
yarn.app.mapreduce.am.resource.cpu-vcores1The number of virtual CPU cores the MR AppMaster needs.
yarn.app.mapreduce.am.hard-kill-timeout-ms10000Number of milliseconds to wait before the job client kills the application.
yarn.app.mapreduce.client.job.max-retries0The number of retries the client will make for getJob and dependent calls. The default is 0 as this is generally only needed for non-HDFS DFS where additional, high level retries are required to avoid spurious failures during the getJob call. 30 is a good value for WASB
yarn.app.mapreduce.client.job.retry-interval2000The delay between getJob retries in ms for retries configured with yarn.app.mapreduce.client.job.max-retries.
mapreduce.application.classpath
CLASSPATH for MR applications. A comma-separated list of CLASSPATH entries. If mapreduce.application.framework is set then this must specify the appropriate classpath for that archive, and the name of the archive must be present in the classpath. If mapreduce.app-submission.cross-platform is false, platform-specific environment vairable expansion syntax would be used to construct the default CLASSPATH entries. For Linux: $HADOOP_MAPRED_HOME/share/hadoop/mapreduce/*, $HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib/*. For Windows: %HADOOP_MAPRED_HOME%/share/hadoop/mapreduce/*, %HADOOP_MAPRED_HOME%/share/hadoop/mapreduce/lib/*. If mapreduce.app-submission.cross-platform is true, platform-agnostic default CLASSPATH for MR applications would be used: {{HADOOP_MAPRED_HOME}}/share/hadoop/mapreduce/*, {{HADOOP_MAPRED_HOME}}/share/hadoop/mapreduce/lib/* Parameter expansion marker will be replaced by NodeManager on container launch based on the underlying OS accordingly.
mapreduce.app-submission.cross-platformfalseIf enabled, user can submit an application cross-platform i.e. submit an application from a Windows client to a Linux/Unix server or vice versa.
mapreduce.application.framework.path
Path to the MapReduce framework archive. If set, the framework archive will automatically be distributed along with the job, and this path would normally reside in a public location in an HDFS filesystem. As with distributed cache files, this can be a URL with a fragment specifying the alias to use for the archive name. For example, hdfs:/mapred/framework/hadoop-mapreduce-2.1.1.tar.gz#mrframework would alias the localized archive as "mrframework". Note that mapreduce.application.classpath must include the appropriate classpath for the specified framework. The base name of the archive, or alias of the archive if an alias is used, must appear in the specified classpath.
mapreduce.job.classloaderfalseWhether to use a separate (isolated) classloader for user classes in the task JVM.
mapreduce.job.classloader.system.classes
Used to override the default definition of the system classes for the job classloader. The system classes are a comma-separated list of patterns that indicate whether to load a class from the system classpath, instead from the user-supplied JARs, when mapreduce.job.classloader is enabled. A positive pattern is defined as: 1. A single class name 'C' that matches 'C' and transitively all nested classes 'C$*' defined in C; 2. A package name ending with a '.' (e.g., "com.example.") that matches all classes from that package. A negative pattern is defined by a '-' in front of a positive pattern (e.g., "-com.example."). A class is considered a system class if and only if it matches one of the positive patterns and none of the negative ones. More formally: A class is a member of the inclusion set I if it matches one of the positive patterns. A class is a member of the exclusion set E if it matches one of the negative patterns. The set of system classes S = I \ E.
mapreduce.jobhistory.address0.0.0.0:10020MapReduce JobHistory Server IPC host:port
mapreduce.jobhistory.webapp.address0.0.0.0:19888MapReduce JobHistory Server Web UI host:port
mapreduce.jobhistory.keytab/etc/security/keytab/jhs.service.keytabLocation of the kerberos keytab file for the MapReduce JobHistory Server.
mapreduce.jobhistory.principaljhs/_HOST@REALM.TLDKerberos principal name for the MapReduce JobHistory Server.
mapreduce.jobhistory.intermediate-done-dir${yarn.app.mapreduce.am.staging-dir}/history/done_intermediate
mapreduce.jobhistory.done-dir${yarn.app.mapreduce.am.staging-dir}/history/done
mapreduce.jobhistory.cleaner.enabletrue
mapreduce.jobhistory.cleaner.interval-ms86400000How often the job history cleaner checks for files to delete, in milliseconds. Defaults to 86400000 (one day). Files are only deleted if they are older than mapreduce.jobhistory.max-age-ms.
mapreduce.jobhistory.max-age-ms604800000Job history files older than this many milliseconds will be deleted when the history cleaner runs. Defaults to 604800000 (1 week).
mapreduce.jobhistory.client.thread-count10The number of threads to handle client API requests
mapreduce.jobhistory.datestring.cache.size200000Size of the date string cache. Effects the number of directories which will be scanned to find a job.
mapreduce.jobhistory.joblist.cache.size20000Size of the job list cache
mapreduce.jobhistory.loadedjobs.cache.size5Size of the loaded job cache
mapreduce.jobhistory.move.interval-ms180000Scan for history files to more from intermediate done dir to done dir at this frequency.
mapreduce.jobhistory.move.thread-count3The number of threads used to move files.
mapreduce.jobhistory.store.class
The HistoryStorage class to use to cache history data.
mapreduce.jobhistory.minicluster.fixed.portsfalseWhether to use fixed ports with the minicluster
mapreduce.jobhistory.admin.address0.0.0.0:10033The address of the History server admin interface.
mapreduce.jobhistory.admin.acl*ACL of who can be admin of the History server.
mapreduce.jobhistory.recovery.enablefalseEnable the history server to store server state and recover server state upon startup. If enabled then mapreduce.jobhistory.recovery.store.class must be specified.
mapreduce.jobhistory.recovery.store.classorg.apache.hadoop.mapreduce.v2.hs.HistoryServerFileSystemStateStoreServiceThe HistoryServerStateStoreService class to store history server state for recovery.
mapreduce.jobhistory.recovery.store.fs.uri${hadoop.tmp.dir}/mapred/history/recoverystoreThe URI where history server state will be stored if HistoryServerFileSystemStateStoreService is configured as the recovery storage class.
mapreduce.jobhistory.recovery.store.leveldb.path${hadoop.tmp.dir}/mapred/history/recoverystoreThe URI where history server state will be stored if HistoryServerLeveldbSystemStateStoreService is configured as the recovery storage class.
mapreduce.jobhistory.http.policyHTTP_ONLYThis configures the HTTP endpoint for JobHistoryServer web UI. The following values are supported: - HTTP_ONLY : Service is provided only on http - HTTPS_ONLY : Service is provided only on https
yarn.app.mapreduce.am.containerlauncher.threadpool-initial-size10The initial size of thread pool to launch containers in the app master.


'spark,kafka,hadoop ecosystems > apache.hadoop' 카테고리의 다른 글

hadoop 과 Yarn  (0) 2018.11.20
hadoop 구성  (0) 2018.11.20
hadoop zipfile as input format  (0) 2018.11.20

kafka vs flink  : https://www.confluent.io/blog/apache-flink-apache-kafka-streams-comparison-guideline-users/


'spark,kafka,hadoop ecosystems > apache.kafka' 카테고리의 다른 글

kafka multi brokers  (0) 2018.11.20
kafka connect  (0) 2018.11.20
kafka-개요  (0) 2018.11.20
kafka 로그 설정 에 대하여  (0) 2018.10.17
Kafka Connector , Simple Connector 구현  (0) 2018.07.16

개요

구성요소

Confluent Platform OpenSource

  • kafka core : 카프카 브로커
  • Kafka Streams : 스트림 처리 시스템을 만들기 위한 카프카 라이브러리
  • kafka connector : 카프카를 데이터베이스, 파일시스템 등에 연결하는 프래임워크.
  • kafka client : 카프카에서 카프카로 메시지를 읽고 ㅆ는 라이브러리
  • kafka REST proxy : 애플리케이션을 카프카 클라이언트용 프로그램으로 동작시킬 수 없는 경우 HTTP를 사용해 카프카에 연결하도록 구성 가능.
  • kafka schema registry : 모든 스키마와 그들의 변경사항에 대한 버전을 보관하는 저장소. 관련된 구성요소가 변경을 인지할 수 있게 함.

Confluent Platform Enterprise

  • 컨플루언트 컨트롤 센터 : 웹 그래픽 사용자 인터페이스, 카프카 시스템을 관리하고 모니터링.
  • 컨플루언트 기술지원, 전문서비스, 컨설팅.

as-is










Machine learning 을 주요 데이터 흐름과 각 노드로 분류하면, Data retrieval, Data preprocessing, Feature Engineering, Modeling,  Predict, Evaluation 단계로 나눌 수 있다.
각 단계 별 Data 의 Input과 Output 특성에 따라 작업을 분해하고 모듈화 하여 구성하는 것이 Data Analysis Framework을 제작하는 첫 단계라고 할 수 있다.

Machine Learning 을 위한 Data는 대개 아래의 과정을 거친다.

Data cleaning

Fill in missing values (attribute or class value):
Identify outliers and smooth out noisy data:
Correct inconsistent data: use domain knowledge or expert decision.

Data transformation

Normalization:
Aggregation: moving up in the concept hierarchy on numeric attributes.
Generalization: moving up in the concept hierarchy on nominal attributes.
Attribute construction: replacing or adding new attributes inferred by existing attributes.

Data reduction

Reducing the number of attributes
Reducing the number of attribute values
Reducing the number of tuples


출처 :  http://www.cs.ccsu.edu/~markov/ccsu_courses/datamining-3.htm

위의 과정은 아래 설명하는 Machine Learning 각 단계에서 적절히 분배되어야 한다.

1.1 Data Retrieval

Data를 조회하고 그 특성을 파악하는 단계로, Data에 통계 기법 등 적용을 위해서는 간단한 변환이 필요하다. 대개 Implementation 단계에서는 필요 없는 작업이므로 엑셀이나 R 등의 접근이 용이한 tool을 사용하는 것이 바람직하다.

따라서,  Framework 모듈 대상에서는 제외할 예정이나 관련 library 정도는 제공하는 것이 바람직하다고 판단된다.

1.2 Data Preprocessing

Data 의 전처리 단계이다. 비 정형 데이터 Input을 뒤에서 ML Algorithm을 사용할 수 있을 정도의 형태로 변환하여 Output으로 제공한다. 뿐만 아니라 데이터의 무결성, 적합성도 보장을 해야 하는 단계이다. 

이를 위하여 비정형 데이터를 정형 데이터로 변환하는 것 뿐 아니라 결측 Data를 제거하거나, 다른 값으로 채워 넣어 보완하거나, 틀린 형식을 보정하는 등의 기능도 제공해야 한다.

1.3 Feature Engineering

Feature Engineering 은 뒤에서 사용할 algorithm에 따라 Feature를 선택/제거하는 기능 및 왜곡을 방지하기 위한 값 변경(normalize, scaling, one-hot encoding..etc.) 기능을 제공해야 한다.

Machine Learning에서 feature engineering 은 사용 Model과 mapping하면 절차적으로 제공 가능하다.

종적 데이터를 횡적 데이터로 변환하고 Vector화 하는 기능이 대부분 Model에서 필요할 것으로 판단된다.

1.4 Modeling

Modeling 단계는 가장 capsulation이 용이한 부분이다. 대부분 solution에서 제공하는 library는 정형적으로 사용하도록 되어 있으며, hyperparameter 만 조절하면 될 정도로 단순하다. 

1.5 Predict, Evaluation

예측 및 평가 단계는 학습과 테스트 Data 를 나누어 검증하는 기능과, 검증 report를 제공하여 사용자가 1.4 단계를 다시 반복할 수 있도록 하는 기능이 필요하다.

Model 과 Predict/Evaluation은 밀접한 상관관계가 있으므로 묶어서 모듈화 하는 고려가 필요하다.



'Algorithm' 카테고리의 다른 글

FDM vs FVM vs FEM  (0) 2021.01.04
kmeans - hadoop map-reduce 프로그래밍  (0) 2018.11.20
1. TSP ( Travel salesman Person ) - Ant colony  (0) 2018.11.19

+ Recent posts